A binary tree representation and related algorithms for generating integer partitions

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast Algorithms for Generating Integer Partitions

We present two new algorithms for generating integer partitions in the standard representation. They generate partitions in lexicographic and antilexicographic order, respectively. We prove that both algorithm generate partitions with constant average delay, exclusive of the output. The performance of all known integer partition algorithms is measured and compared, separately for the standard a...

متن کامل

A Unified Approach to Algorithms Generating Unrestricted and Restricted Integer Compositions and Integer Partitions

An original algorithm is presented that generates both restricted integer compositions and restricted integer partitions that can be constrained simultaneously by a) upper and lower bounds on the number of summands (“parts”) allowed, and b) upper and lower bounds on the values of those parts. The algorithm can implement each constraint individually, or no constraints to generate unrestricted se...

متن کامل

A Loopless Algorithm for Generating Multiple Binary Tree Sequences Simultaneously

Pallo and Wu et al. respectively introduced the left-weight sequences (LW-sequences) and right-weight sequences (RW-sequences) for representing binary trees. In this paper, we introduce two new types of binary tree sequences called the left-child sequences (LC-sequences) and right-child sequences (RC-sequences). Next, we propose a loopless algorithm associated with rotations of binary trees for...

متن کامل

Integer Partitions

Let  denote the positive octant of the regular -dimensional cubic lattice. Each vertex (1 2     ) of  is adjacent to all vertices of the form (1 2      + 1     ), 1 ≤  ≤ . A -partition of a positive integer  is an assignment of nonnegative integers 12 to the vertices of , subject to both an ordering condition 12 ≥ max 1≤≤ 12+...

متن کامل

Integer Partitions and Convexity

Let n be an integer ≥ 1, and let p(n, k) and P (n, k) count the number of partitions of n into k parts, and the number of partitions of n into parts less than or equal to k, respectively. In this paper, we show that these functions are convex. The result includes the actual value of the constant of Bateman and Erdős.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Computer Journal

سال: 1980

ISSN: 0010-4620,1460-2067

DOI: 10.1093/comjnl/23.4.332